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A B S T R A C T

Dynamic networks offer an insight of how relational systems evolve. However, modeling these networks
efficiently remains a challenge, primarily due to computational constraints, especially as the number of
observed events grows. This paper addresses this issue by introducing the Deep Relational Event Additive Model
(DREAM) as a solution to the computational challenges presented by modeling non-linear effects in Relational
Event Models (REMs). DREAM relies on Neural Additive Models to model non-linear effects, allowing each
effect to be captured by an independent neural network. By strategically trading computational complexity
for improved memory management and leveraging the computational capabilities of graphic processor units
(GPUs), DREAM efficiently captures complex non-linear relationships within data. This approach demonstrates
the capability of DREAM in modeling dynamic networks and scaling to larger networks. Comparisons with
traditional REM approaches showcase DREAM superior computational efficiency. The model potential is further
demonstrated by an examination of the patent citation network, which contains nearly 8 million nodes and
100 million events.
1. Introduction

Dynamic network modeling have emerged as an essential tool in
social network studies, providing a nuanced perspective on the evolving
nature of interactions and relationships. These networks capture the
dynamism inherent in dynamic interacting structures by shedding light
on how connections form, dissolve, or transform over time. Although
the inclusion of the temporal dimension increases the complexity of
the models, it provides richer insights, revealing patterns that static
networks might miss.

Relational Event Models (REMs) (Butts, 2008; Perry and Wolfe,
2013; Bianchi et al., 2024) are an efficient and flexible framework
for modeling dynamic networks, particularly in settings where events,
or interactions between actors, occur sequentially over time. Unlike
traditional network models, which focus on aggregated states or snap-
shots, REM focuses on micro-dynamics, tracking the chronological
order of ties as they form or dissolve (Fritz et al., 2020). The great
versatility of REMs is underscored by the diverse fields to which they
have been applied. In finance, Lomi and Bianchi (2021) and Zappa
and Vu (2021) highlight that resource exchanges vary significantly
across different trading conditions, temporal contexts, and the values
involved. Similarly, in healthcare, Vu et al. (2017) observed that pa-
tient transfers tend to form around tightly-knit hospital clusters that
frequently reciprocate transfers. Amati et al. (2019) analyzed hospital
collaborations in Southern Italy, revealing that interaction dynamics
within these networks fluctuate considerably throughout the week. In
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ecology, Tranmer et al. (2015) investigated social behavioral dynamics,
such as food sharing, among jackdaws, whereas (Patison et al., 2015)
used REMs to analyze adaptive behavior among cows when introduced
to new herd members. In another ecological application, Juozaitienė
et al. (2023) utilized REMs to explore the dynamics of ecological
niche invasions by modeling interactions between invasive species and
their new territories. Despite its easy adaptability, REM’s practical
applicability is limited by its computational complexity (Welles et al.,
2014).

Vu et al. (2015) first tackled the problem by proposing various
sampling strategies on the risk-set connected to the partial-likelihood
denominator. Lerner and Lomi (2020) demonstrated the robustness
of REMs when the risk-set is sub-sampled via a nested-case-control
approach, demonstrating that when REMs are used to model large
dynamic networks, only one control per case is sufficient to obtain
reliable estimates. This sub-sampling strategy was used by Filippi-
Mazzola and Wit (2023) to approximate the REM partial likelihood by a
logistic regression, which reduces computational complexity and allows
for efficient modeling of non-linear effects.

Non-linear approaches to REMs where first tackled by Bauer et al.
(2022) using B-splines (De Boor, 1972). By design, these spline-based
models require to storing multiple high-dimensional model matrices.
When these factors are combined with large networks with millions of
dyadic interactions, many REM computing frameworks suffer from both
convergence and memory management issues.
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Inspired by Neural Additive Models (Agarwal et al., 2021), we
propose to model non-linear effects through a Deep Relational Event
Additive Model (DREAM). DREAM strategically trades computational
complexity with memory management by letting each effect be mod-
eled by an independent neural network. By leveraging the higher
computational power of graphic processor units (GPUs), DREAM is
able to capture complex non-linear effects among variables. Each of
these independent neural networks is trained at the same time us-
ing a Stochastic Gradient Descent (SGD) approach. SGD is especially
renowned for its ability to handle large datasets and high-dimensional
spaces as it iteratively refines model parameters to ensure optimal
convergence. The simultaneous estimation of these neural networks
not only increases computational efficiency, but also ensures that in-
terdependencies and mutual information among different effects are
captured effectively.

In this paper, we start by describing the methodological background
on which REMs are built on in Section 2. After defining how DREAM is
structured in Section 3, we provide a comprehensive simulation study
to test its robustness and efficiency in Section 4. To conclude, we show
an application on the analysis of the US patent citation network in
Section 5.

2. Background and methods

REMs are a class of statistical models for sequences of social inter-
action events occurring over time. The primary focus of these models
for is to model the pattern and structure of relationships that emerge
as a series of observed social interactions or events.

2.1. Relational event model

In REMs, the primary statistical units are a series of recorded dyadic
interaction defined as events. These are denoted as 𝑒𝑖 (𝑖 = 1,… , 𝑛) and
are typically represented by the triplet 𝑒𝑖 = (𝑠𝑖, 𝑟𝑖, 𝑡𝑖), which denotes that
an action was initiated by a sender 𝑠𝑖, targeted towards a receiver 𝑟𝑖,
and occurred at a specific time 𝑡𝑖.

Following Perry and Wolfe (2013), it is possible to define a mul-
tivariate counting process 𝑁𝑠𝑟(𝑡) that records the number of directed
interactions between 𝑠 and 𝑟, up to time 𝑡,

𝑁𝑠𝑟(𝑡) =
∑

𝑖⩾1
𝟏{𝑡𝑖⩽𝑡; 𝑠𝑖=𝑠; 𝑟𝑖=𝑟}.

𝑁𝑠𝑟(𝑡) is then a local submartingale, where, through Doob–Meyer de-
composition 𝑁𝑠𝑟(𝑡) = 𝛬𝑠𝑟(𝑡) + 𝑀𝑠𝑟(𝑡), we can define its predictable
increasing process 𝛬𝑠𝑟(𝑡). REMs describe this predictable increasing
process by assuming that the counting process is an inhomogeneous
Poisson process, i.e.,

𝛬𝑠𝑟(𝑡) = ∫

𝑡

0
𝜆𝑠𝑟(𝜏)𝑑𝜏,

where 𝜆𝑠𝑟 is the hazard function of the relational event (𝑠, 𝑟). Consider-
ing the history of prior events H𝑡 up to time 𝑡, a common method for
modeling this intensity function relies on the log-linear model (Cox,
1972). Consequently, the intensity function is expressed as the prod-
uct of a baseline hazard 𝜆0(𝑡) and an exponential function of 𝑞 H𝑡-
measurable covariates 𝑥,

𝜆𝑠𝑟(𝑡 ∣ H𝑡) = 𝜆0(𝑡)𝑒𝑓 (𝑥𝑠𝑟), (1)

where 𝑓 (𝑥𝑠𝑟) =
∑𝑞
𝑘=1 𝑓𝑘(𝑥𝑠𝑟𝑘) is some additive model. In the original for-

mulation of the REM, 𝑓𝑘(𝑥𝑠𝑟𝑘) is modeled as a linear function weighted
by a coefficient 𝛽𝑘, such that 𝑓𝑘(𝑥𝑠𝑟𝑘) = 𝑥𝑠𝑟𝑘𝛽𝑘.

Given the network prior history, the model definition assumes
conditional independence of events. Incorporating covariates into this
structural design allows for an in-depth investigation into a multitude
of individual influences or factors that contribute to the occurrence
of the event. These influential components are typically classified as
26 
exogenous or endogenous. Exogenous factors generally pertain to at-
tributes or effects related to the sender or receiver, offering insights
into external dynamics. These could include individual characteristics,
roles within the network, or external circumstances that influence their
actions. On the other hand, endogenous factors relate to the intrinsic
micro-mechanisms within the network itself. These are patterns or
tendencies that arise from the inherent structure and dynamics of the
network, becoming visible as the series of events progressively unfold
over time. By recognizing and studying these factors, we can gain
an understanding of how the network internal mechanisms shape the
unfolding of events.

A further characteristic that lends significant appeal to the pro-
portional hazard model is its absence of distributional assumptions
concerning activity rates. This flexibility is a notable advantage over
fully parametric models and enables to treat the baseline hazard 𝜆0 as
a nuisance parameter (Cox, 1975). This strategic consideration helps
simplify the computational complexities that emerge when trying to es-
timate the weights in the full-likelihood derived from (1). The resulting
partial likelihood is expresses as follows,

𝐿𝑃 (𝛽) =
𝑛
∏

𝑖=1

⎛

⎜

⎜

⎜

⎜

⎝

exp
{

𝑓 (𝑥𝑠𝑖𝑟𝑖 )
}

∑

(𝑠∗𝑖 ,𝑟
∗
𝑖 )∈R(𝑡𝑖) exp

{

𝑓 (𝑥∗𝑠∗𝑖 𝑟𝑖
)
}

⎞

⎟

⎟

⎟

⎟

⎠

, (2)

where R(𝑡) is the risk-set, i.e., the set of all possible relational events
that could have happened at time 𝑡.

2.2. Nested case control sampling

While the application of partial likelihood in (2) introduces sig-
nificant simplifications to REM estimation, its practical application is
constrained by the dimensionality of its denominator. The risk set R(𝑡)
tends to increase quadratically with the number of nodes in traditional
longitudinal networks, although it may vary depending on the specific
context. For instance, in citation networks, the risk set tends to expand
linearly as new nodes cite existing documents within the network (Vu
et al., 2011; Filippi-Mazzola and Wit, 2023). However, irrespective of
the individual scenarios under analysis, scalability remains a limiting
factor for these models. Large networks, comprising millions of nodes,
will inevitably pose computational challenges and potentially limit the
model efficiency in such contexts.

A solution to this issue has been proposed by Vu et al. (2015),
who introduced the idea of nested case-control sub-sampling the risk
set (Borgan et al., 1995). The central idea revolves around analyzing all
the observed events, or ‘‘cases’’, while only scrutinizing a smaller subset
of non-events, termed ‘‘controls’’. (Borgan et al., 1995) demonstrated
that using a nested case-control sampled risk set yields a consistent
estimator. Building on this concept, Boschi et al. (2023) and Filippi-
Mazzola and Wit (2023) extended the empirical findings of Lerner and
Lomi (2020) to show that in scenarios with a large number of nodes,
one control per case is sufficient to obtain reliable parameter estimates.

When only a single control per case is considered, the partial
likelihood in (2) results in the likelihood of a logistic regression model
where only successful outcomes are observed as responses. This key
insight further enhances the practicality of REMs, reducing the com-
putational complexity of estimating large and complex risk sets. With
this transformation in place, the sub-sampled case-control version of
the partial likelihood in (2) is given as,

𝐿𝑃 (𝛽) =
𝑛
∏

𝑖=1

⎡

⎢

⎢

⎢

⎣

exp
{

𝑓 (𝑥𝑠𝑖𝑟𝑖 ) − 𝑓 (𝑥𝑠∗𝑖 𝑟∗𝑖 )
}

1 + exp
{

𝑓 (𝑥𝑠𝑖𝑟𝑖 ) − 𝑓 (𝑥𝑠∗𝑖 𝑟∗𝑖 )
}

⎤

⎥

⎥

⎥

⎦

, (3)

where 𝑥𝑠∗𝑖 𝑟∗𝑖 is a randomly sampled non-event for 𝑖th event sender 𝑠∗𝑖
∗
and receiver 𝑟𝑖 from R(𝑡𝑖).
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3. Deep relational event additive model

Although standard REM formulations assume that the rate of inter-
action between 𝑠 and 𝑟 exhibits a linear dependence on the covariates,
the relationship between predictors and event rates could be non-
linear and exhibit a greater degree of complexity. If this is the case,
deploying linear effects could inadvertently result in model oversim-
plification and the production of biased estimates. This highlights
the necessity of exploring alternative modeling techniques beyond the
traditional linear framework. In this section, we propose the Deep Rela-
tional Event Additive Model (DREAM) to estimate non-linear effects in
large networks, that leverages machine-learning methods and graphical
processors units for efficient computation.

3.1. Non-linear modeling with neural networks

Modeling non-linear effects in REMs was first tackled by Bauer
et al. (2022) and Filippi-Mazzola and Wit (2023). Both heavily rely on
the use of B-splines (De Boor, 1972), a computational technique that
represents curves as a series of interconnected piecewise polynomial
functions. While splines are a standard tool in non-linear, additive mod-
eling, their implementation comes with challenges in big data settings,
especially with respect to memory: the fitting procedure necessitates
the creation of a potentially huge model matrix.

DREAM strategically trades off memory usage with computational
complexity. Following the recent developments of Neural Additive
Models (Agarwal et al., 2021), DREAM leverages multi-layered neural
networks to model non-linear effects, where each effect is modeled by
an independent neural network. Let then 𝑓𝑘 be a feed-forward Artificial
Neural Network (ANN) (Ripley, 1996) with a single input and a single
output, separated by 𝐿 layers, for 𝑙 = 1,… , 𝐿. Each of these layers
contains 𝑚1,… , 𝑚𝐿 neurons. The output of each 𝑓𝑘 is the result of a
series of sequential operations, such as

𝑎(1)𝑘 = 𝜙
(

𝛽(1)𝑘 𝑥𝑠𝑟𝑘 + 𝛽
(1)
0𝑘

)

𝑎(2)𝑘 = 𝜙
(

𝛽(2)𝑘 𝑎(1)𝑘 + 𝛽(2)0𝑘

)

⋮

𝑎(𝐿−1)𝑘 = 𝜙
(

𝛽(𝐿−1)𝑘 𝑎(𝐿−2)𝑘 + 𝛽(𝐿−1)0𝑘

)

𝑎(𝐿)𝑘 = 𝛽(𝐿)𝑘 𝑎(𝐿−1)𝑘 + 𝛽(𝐿)0𝑘 ,

where 𝑎(𝑙)𝑘 represents the output of the 𝑙th layer for the 𝑘th covariate,
𝛽(𝑙)𝑘 is the weight matrix of size 𝑚𝑙 × 𝑚𝑙−1, and 𝛽(𝑙)0𝑘 is the intercept or
bias of size 𝑚𝑙 × 1. 𝑓𝑘 is then an ANN with 𝑀 =

∑𝐿
𝑙=1(𝑚𝑙 × 𝑚𝑙−1 + 𝑚𝑙)

number of parameters. 𝜙 is a non-linear function, commonly referred
as activation function. ANN models use a non-linear function to be able
to model complex relationships in data, in a way that a linear function
cannot. Noel et al. (2023) recently proposed the Growing Cosine Unit
(GCU) activation function, as a way to deal with some of the drawbacks
of standard activation functions. In our empirical evaluation, this func-
tion seems to perform well. A more detailed discussion on the activation
function can be found in Appendix A. 𝑓𝑘 can then be expressed as

𝑓𝑘(𝑥𝑠𝑟𝑘) = 𝛽(𝐿)𝑘

(

…𝜙
(

𝛽(2)𝑘
(

𝜙
(

𝛽(1)𝑘 𝑥𝑠𝑟𝑘 + 𝛽
(1)
0𝑘

))

+ 𝛽(2)0𝑘

)

…
)

+ 𝛽(𝐿)0𝑘 . (4)

Let then 𝑓 (𝑥𝑠𝑟) represent the collective sum of 𝑞 independent ANN
output effects for 𝑥𝑠𝑟𝑘(𝑡), with 𝑘 = 1,… , 𝑞, i.e., 𝑓 (𝑥𝑠𝑟) =

∑𝑞
𝑘=1 𝑓𝑘(𝑥𝑠𝑟𝑘).

Each of these ANNs is then trained simultaneously to maximize (3).
Fig. 1 describes the structure of how the information is passing through
𝑓 (𝑥𝑠𝑟), offering a clear understanding of the DREAM framework. The
most significant asset of this modeling technique lies in its interpretabil-
ity. Through a visual examination of the individual functions 𝑓𝑘, one
can develop a comprehensive understanding of the dynamic behavior
of each effect 𝑥𝑠𝑟𝑘, mimicking the interpretability of splines. Although
this technique increases the computational complexity for evaluating

the likelihood in (3) as the passage from one layer of the network
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to another requires multiple matrix multiplications, it eliminates the
heavy memory usage associated with basis transformations. While mod-
ern frameworks allows efficient matrix operations, the efficiency of this
approach is mainly guaranteed by recent technological advancements
in the application of vectorized computations on GPUs.

Like most common machine-learning techniques, DREAM scalability
in the estimation process is attained thanks to the adoption of a Stochas-
tic Gradient Descent (SGD) approach. SGD is particularly effective for
large datasets and complex models, as it updates model parameters
iteratively based on a subsets (batches) of data, rather than the entire
dataset.

Among the available SGD methodologies, we use the ADAM opti-
mizer (Kingma and Ba, 2017). ADAM is easily scalable and has reliable
convergence (Reddi et al., 2018). Its computational merits are due to
the way this approach updates the weights of the model, by calculating
individual adaptive learning rates based on estimates of the first and
second moments of the gradients. Details on ADAM can be found in
Appendix B.

While DREAM’s flexibility allows for different regularization tech-
niques to be used, in our modeling approach we used dropout (Srivas-
tava et al., 2014) to prevent overfitting during the estimation process.
By randomly omitting subsets of features or neurons during the training
phase, dropout helps improve the robustness and generalizability of the
neural network. Together with the number of layers, and the number of
neurons per layer, dropout constitutes one of the main hyperparameters
of the model to infer.

3.2. Uncertainty estimation with Gaussian process regression

Due to its over-parametrization, estimation of ANN hyper-
parameters {𝛽(𝑙)0𝑘 , 𝛽

(𝑙)
𝑘 }𝑘,𝑙 via SGD does not imply achieving convergence

o a global optimum. As discussed in Goodfellow et al. (2016), neural
etwork optimization often focuses on finding satisfactory parameters
hat perform well, rather than continuing the estimation process until a
heoretical optimum is reached. This approach recognizes the complex,
igh-dimensional landscapes in which these models operate, where
ultiple parameter sets can yield comparably effective outcomes. Con-

equently, the specific parameters of a neural network should not be
nterpreted in isolation since their values can vary across different runs
f the model without necessarily affecting performance. Instead, our
ttention focuses on the behavior of the estimated functions 𝑓𝑘, which
rovide meaningful insights into the data relationships modeled by the
NN. Consequently, our focus on uncertainty assessment pertains to

he estimated functions, rather than the hyper-parameters.
A common solution for non-parametric models is to employ non-

arametric bootstrap (Efron, 1979). Such procedure estimates point-
ise uncertainty intervals by generating a sufficient number of sampled

opies from original dataset. For each repetition, the model is re-trained
n a new ‘‘bootstrapped’’ version of the original dataset. Consequently,
ach re-train yields distinct estimates of the non-linear effects. Once
sufficient number of repetitions are completed, confidence bands

an be directly computed from the estimated curves using the desired
ercentiles.

While bootstrapping offers a flexible way to evaluate estimation
ncertainty, it is computationally demanding, particularly when con-
idering the training requirements of neural networks. To address this,
e propose to post-process a limited number of bootstrap refits via
aussian Processes Regression (GPR) (Rasmussen and Williams, 2006)

o obtain robust confidence bands.
We assume that the estimated function can be represented by a

aussian process 𝑓𝑘 ∼ G P(𝑓𝑘, 𝐾𝑘) where 𝑓𝑘 represents the true mean
unction of the Gaussian Process, while 𝐾𝑘 is a Radial Basis Function
RBF) kernel with the form

𝑘 = exp
(

−
∣∣ 𝑥 − 𝑥′ ∣∣

)

, (5)

2𝑙2
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Fig. 1. DREAM framework. Each effect is modeled via an independent ANN structure that captures its non-linearity. It is possible to extend this modeling technique with interaction
effects simply by letting 𝑓𝑘 have a multivariate input, such as 𝑓𝑘(𝑥𝑠𝑟𝑘1 , 𝑥𝑠𝑟𝑘2 ), and a univariate output.
u
here 𝑙 is a scale parameter, while 𝑥′ is a subsequent value of 𝑥.
omputing the posterior mean and covariance matrix, we obtain an
stimated mean function whose uncertainty is represented by the stan-
ard deviations computed by square rooting the diagonal of the pos-
erior covariance matrix. The 𝑂(𝑛3) computational complexity of GPR
odels presents a limitation for large-scale applications. This higher

omputational cost is due to the inversion of the kernel matrix in
he posterior. However, to obtain pointwise estimates of the curves,
t is sufficient to evaluate the kernel matrix on a reduced sample of
quidistant points on the support range of 𝑥. Knowing the upper and
he lower bound of each covariate, we can generate a vector 𝑥̃ of

equidistant points. We can then define 𝑥̃ = (𝑥̃1, 𝑥̃2 … , 𝑥̃𝑁 ), where 𝑥̃𝑖 =
𝑥min + (𝑖 − 1)𝛥 for 𝑖 = 1,… , 𝑁 , with 𝛥 = 𝑥max−𝑥min

𝑁−1 and 𝑁 ≪ 𝑛. With 𝑥̃,
e can compute the posterior estimates of the Gaussian Process,

𝜇̂(𝑥̃) = 𝐾⊤
𝑘 [𝐾𝑘 + 𝐼]

−1𝑓 (𝑥̃), (6)
̂ (𝑥̃) = 𝐾𝑘 −𝐾⊤

𝑘 [𝐾𝑘 + 𝐼]
−1𝐾𝑘, (7)

here 𝐼 is the identity matrix that improves numerical stability during
nversion. While in many scenarios it is possible to scale this identity
atrix by multiplying 𝐼 to a constant, we have noticed in our applica-

ions that the results remain roughly invariant to such scaling. Overall,
his alternative approach is designed to offer a more computationally
fficient alternative to a full bootstrap approach.

. Simulation study

In this section, we present a series of simulation studies that high-
ight DREAM’s ability in accurately identifying non-linear effects in
ynamic networks. We focus on three specific aspects. The initial
imulation study illustrates DREAM’s ability in reconstructing the true
enerating functions behind observed effects. Secondly, given their
lose similarity, it is natural to compare additive Neural Network
odels with spline-based additive models such as Generalized Additive
odels (GAMs) (Hastie and Tibshirani, 1986). In our comparison, we
28 
se the gam function from the mgcv package in R. Finally, we present
a study on the time-complexity of our method. The full code has been
written in python within the pytorch suite (Paszke et al., 2019) and it is
publicly available in a GitHub repository (https://github.com/efm95/
DREAM) together with all the simulations and application.

4.1. True function recovery

We simulated relational event data under the assumption that each
node possesses both a sender and a receiver covariate simulated as
uniform variables U (0, 1). The effect of each covariate is given in red
in Fig. 2. A network with 5000 nodes and 500,000 edges is sampled.
The fitted curve was estimated via five bootstrap refits, followed by the
application of a GPR model using the scikit-learn Python library (Pe-
dregosa et al., 2011). The ANN architecture was determined via CV
(details can be found in the supplementary materials in S1, while for-
mulas of true generating functions can be found in the supplementary
materials S2).

The results show how the estimated curves follow the true gen-
erating functions behavior, while the estimated confidence intervals
obtained through this approach encompass the true functions over the
variables support.

4.2. Accuracy comparison with GAM

As previously noted, non-linear effects in a REM can be estimated
by using a logistic regression additive model approach. A computa-
tionally efficient choice is the gam function within the mgcv pack-
age in R, where the smooth terms are estimated via penalized b-
splines. The great advantage of mgcv is that the degrees of freedom
of the splines are automatically selected, thus reducing the number of
hyperparameters that are required to be set.

Comparing models using traditional information criteria such as AIC
or BIC may not provide a fair assessment in the context of ANNs.

https://github.com/efm95/DREAM
https://github.com/efm95/DREAM
https://github.com/efm95/DREAM
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Fig. 2. True and estimated effects along with their confidence intervals. The red lines denote the actual effects, whereas the blue lines are the estimated effects, and the dashed-blue
lines represent the confidence intervals. Confidence intervals are calculated by adding and subtracting twice the local standard error from the estimated functions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Log-partial-likelihood values for each estimated compared with the one computed
from the sampled population using the true generating model. Subsequently, the
KL-divergence values are assessed in relation to this same sampled population.

GAM DREAM Population

log𝐿𝑃 −232’991.59 −232’102.28 −231’634.90
𝐾𝐿(Pop.∥Model) 1794.71 1647.98 –

This is because ANNs incorporate a substantially larger number of
parameters compared to GAMs or other classical statistical models.
To address this challenge, we adopt an alternative metric for model
comparison. Specifically, in Table 1, we report the maximized log-
partial-likelihood values obtained by DREAM and a GAM, alongside
the log-partial-likelihood computed from the sampled population with
the true generating functions. By using the Kullback–Leibler (KL) diver-
gence assessed with the sampled population, we provide a comparison
that considers model fit and the ability to accurately reconstruct the
true generating functions.

From the results in Table 1, it is possible to notice DREAM attains
a log-partial-likelihood score that more closely attains the one of the
sampled population. As a consequence, this is also reflected in its KL-
divergence scores. For this scenario, GAM with smooth terms is slightly
outperformed. However, the proximity of the performances between
DREAM and GAM suggests that both models offer a similar level of
accuracy in approximating the true model.

4.3. Time efficiency comparison with GAM

Estimation in the mgcv package use highly optimized Newtonian
solvers, written in C routines to achieve rapid convergence. However,
the computational efficiency of these solvers is frequently undermined
by R less-than-optimal memory management system (Kotthaus et al.,
2015). This results in computational bottlenecks, prolonging the time
required for the algorithm to converge. In some instances, the in-
efficiency in memory management can even lead to computational
overflow, further complicating the estimation process.

In contrast, DREAM relies on the PyTorch suite (Paszke et al., 2019),
a deep learning framework that excels in handling vectorized opera-
tions. PyTorch is specifically designed to leverage the computational
capabilities of Graphics Processing Units (GPUs). Using Google Colab
free GPUs (Nvidia Tesla T4 with 15 GB of memory), we run two sets
of simulations to compare mgcv convergence times with DREAM with
he implementation of the GPR approach to estimate the curves.

It is important to consider that the convergence time of DREAM
hould not be evaluated in isolation, as it depends on various hy-
erparameters such as the learning rate and number of epochs. To
ddress this, we always fitted DREAM with the default learning rate
f 0.001, and we employed an early stopping technique to stop the
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training process. The convergence timings presented in this section
include not only the duration required to achieve a convergence but
also the multiple iterations needed to fit the Gaussian process for
uncertainty estimations. Fig. 3(a) compares the convergence times of
mgcv and DREAM using generated REM data that comprised 1000
nodes and 100,000 events. We gradually augmented the complexity
by sequentially covariates, thus increasing the number of non-linear
effects that each model needed to estimate. We carried out the fitting
procedure ten times. While mgcv convergence time initially appeared
faster with only two covariates, its performance rapidly degraded as
the complexity grows, revealing the computational bottleneck within
R. Conversely, DREAM exhibited only a modest uptick in convergence
time as the complexity increased. Fig. 3(b) presents for a larger dataset
comprising 5000 nodes and 500,000 events. While the C routines lend
mgcv stability in its convergence times, it becomes noticeably strained
with the inclusion of 4 covariates, taking considerably longer. It is to
note that with this size of data, we were not able to fit a model with
more covariates as the algorithm failed to converge.

5. US patent citation network

To demonstrate DREAM practical applicability on large networks,
we model non-linear effects in the US patent citation network that
contains nearly 100 million citations and almost 8 million patents from
1976 to 2022. We chose this specific application not only because of
its size and complexity, but also because the data preprocessing pro-
cedures and the computation of the statistics are well-defined (Filippi-
Mazzola and Wit, 2023), making the study more accessible and simple
to replicate. The preprocessing of the patent citation network can be
found at https://github.com/efm95/STREAM. A detailed model selec-
tion for the application to the US patent citation network is extensively
covered in the supplementary material, under section S3.

In order for a patent to be formally issued, the applicant must
disclose all relevant prior art. As a result, the US patent citation network
consists of patents that cite earlier works in relation to their issuance
date. This results in a dynamic network that is constantly growing and
expanding. Within this network, nodes are represented by patents, and
as they are published, they establish connections to pre-existing nodes
in the network via citations. The aim of this modeling exercise is to
identify what drives a patent 𝑠 to cite a patent 𝑟 at time 𝑡.

Filippi-Mazzola and Wit (2023) proposed to model the network via
three different set of statistics: patent effects, patent similarity effects
and endogenous temporal effects. The first set of effects are portrayed in
Fig. 4 and consists of the receiver publication year, the time-difference
between the sender issue date and the receiver publication date, and
the receiver outdegree. Fig. 4(a) shows a maximum around the year
2000. Potentially, this indicates that increased technological innova-
tion happened during that time. The time-difference effect identifies a
period of approximately 5 years following the patent publication date

https://github.com/efm95/STREAM
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Fig. 3. Comparison of convergence times between MGCV and DREAM across two simulated REM data scenarios.
Fig. 4. Nodal effects consisting of a receiver publication year effect, a time-difference effect and a receiver outdegree effect.
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when citations are most likely. Finally, the receiver outdegree confirms
that patents with a higher number of citations at the time of publication
tend to play a more central role in the network, consequently increasing
their chances of accumulating more citations over time.

The second set of effects, shown in Fig. 5, delves into the patent
similarity characteristics that contribute to a citation. The first statistic
is textual similarity. We embed patent abstracts in an euclidean space
using a pre-trained SBERT model (Reimers and Gurevych, 2019), and
calculate pairwise cosine similarities. The resulting non-linear effects
conclusively demonstrate that patents are more likely to cite each other
when their abstracts share significant textual similarities. Specifically,
the hazard of a citation occurring is 60 times higher for patients who
share a textual similarity larger than 0.5 when compared to those
who share a similarity of 0.2. Secondly, we consider the technological
relationship between the two patents, as indicated by their shared Inter-
national Patent Classification (IPC) classes. We capture the proportion
of shared classes to the total classes observed across both patents by
computing the Jaccard similarity among these IPC classes. According
to the results Fig. 5(b), the rate of one patent citing another increases
as shared the number of technology classes increases. Indeed, when
comparing citations with a Jaccard index of 0.4 to those with 0, the
hazard rate increases by about 7 times.

Fig. 6 captures time-varying factors that influence the rate of a
patent being cited. The first of these is the cumulative citations a patent
has received, illustrating that as a patent accumulates more citations,
its probability of receiving additional ones increases, until it reaches a
plateau around 𝑒5.4 ≈ 221. The second effect evaluates the time elapsed
since a patent most recent citation. This indicates that the longer the
duration since the last citation, the less probable it becomes for the
patent to be cited again.

For an alternative interpretability of the model’s outputs, the supple-
mentary materials section S4 include figures that present the effects of
our the fitted effects expressed in terms of Hazard contributions rather

than Log-hazard contributions. t
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Following the classification system proposed by Oliver et al. (2017),
the contributions of effects to the hazard can be categorized into large,
edium, or small based on their hazard ratio sizes. Observations from
ur analysis reveal significant variations in hazard contributions across
he support of these effects. Most notably, the majority of these hazard
atio sizes fall within the medium or large categories. This indicates not
nly the substantial impact of these effects on the model’s outcomes
ut also underscores their relevance in describing the overall dynamics
f the patent citation network.

. Conclusions

Relational Event Models offer a versatile framework for model-
ng dynamic networks. Yet, their real-time application often faces
hallenges due to the computational complexity in their fitting pro-
edures. Such challenges tend to amplify as the volume of observed
vents increases. In this study, we present a solution to these com-
utational issues by introducing the Deep Relational Event Additive
odel (DREAM). In DREAM, the non-linear behavior of each covariate

s captured by an independent Artificial Neural Network, providing
oth precision and efficiency in capturing network dynamics.

We proposed two distinct methods in DREAM for estimating areas of
ncertainty. The first method entails non-parametrically bootstrapping
he observed dataset and then refitting the model multiple times. The
econd method, employs Gaussian Process Regression based on a small
ubset of non-parametric bootstrap refits, offering a more efficient way
o handle uncertainty while maintaining robustness in our estimations.

Throughout a series of simulation studies, we introduced and tested
he capabilities of DREAM, emphasizing its ability in capturing non-
inear effects within large dynamic networks. The robustness and ef-
iciency of DREAM became clear when compared to existing methods
uch as GAMs from the MGCV package in R. DREAM strength lies not
nly in its ability to accurately model nonlinear effects, but also in its
ast convergence, which is accomplished by leveraging the computa-

ional advantages of Pytorch and GPUs. We further demonstrated the
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Fig. 5. Similarity effect consisting of the textual similarity effect and the technological relatedness effect.
Fig. 6. Time-varying effects consisting of the cumulative citations received and the time from last event.
practical significance of DREAM by modeling a patent citation network,
which encompasses nearly 100 million events and about 8 million
actors.

In our study, we have not addressed the complex challenge of
assessing model fit for REMs, particularly when applied to large-scale
and complex datasets. The metrics employed, like KL divergence, while
effective under controlled simulation conditions, fall short in empiri-
cal scenarios where the true underlying function is unknown. Conse-
quently, we used a held-out set and cross-validation techniques in both
our simulation study and our empirical setting, to evaluate the fit of our
the chosen model. However, this approach falls short when discerning
which non-linear relationships are most accurately represented. This
underscore the importance of methodological innovation in the area of
model evaluation in REMs to keep pace with the evolving complexity
of data structures and analysis techniques in social network research.

DREAM not only offers an efficient and scalable approach to ana-
lyzing longitudinal networks and capturing complex non-linear effects,
but it also offers remarkable flexibility to customize model complexity.
This adaptability includes compatibility with traditional regularization
methods like dropout, ridge, and lasso. As speculated in Section 3.1,
DREAM has the potential to be expanded to capture complex non-linear
interactions among covariates. Currently, our architecture processes
each covariate separately. However, future iterations of this model
could explore the implementation of a single, wider neural network that
processes the entire q-dimensional covariate vector (𝑥𝑠𝑟1,… , 𝑥𝑠𝑟𝑞). This
approach would directly transform the vector into 𝑓 (𝑥𝑠𝑟), potentially
enhancing the model’s ability to capture and interpret higher-order

interactions without the combinatorial increase in complexity seen with

31 
models that estimate functions on pairs of covariates. Such a configura-
tion would not only simplify the architecture but could also offer more
profound insights by varying covariate combinations systematically,
fixing others at their means to isolate effects. The inherent capability
of neural networks to manage high-dimensional inputs suggests that
this could be a feasible and valuable direction for future research,
particularly as it might overcome the limitations associated with more
traditional methods like B-splines in modeling complex interactions
within large datasets. Moreover, DREAM flexibility allows to be easily
adapted to address multi-cast interactions (Perry and Wolfe, 2013) and
further extended to model hyperedges (Lerner and Lomi, 2023).
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Appendix A. Oscillatory activation functions

Among the prevalent choices for activation functions lies the fam-

ily of Rectified Linear Units (ReLU) (Agarap, 2019), known for their
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simplicity and computational efficiency. Despite the attractive features,
ReLU functions are often affected by the issue known as the ‘‘dy-
ing ReLU’’ (Lu, 2020). This emerges in many empirical applications
when certain neurons within the network become perpetually inactive,
i.e., they continuously output zeros for specific regions of the input
support space. This behavior makes the affected neurons essentially
irrelevant during the training phase as once a neuron enters in this
state, the gradient at that point becomes zero. Consequently, during the
backpropagation phase, no updates are made to the weights connected
to that neuron. The absence of any weight adjustment leads to a state
of inertia where the neuron remains inactive, never contributing to the
model again.

Within the family of non-linear activation functions, two notewor-
thy alternatives to the ReLU are the Sigmoid (Narayan, 1997) and
Hyperbolic Tangent (tanh) (Namin et al., 2009). While both functions
share similar sigmoidal curves, they exhibit distinct behaviors con-
cerning their derivatives. Specifically, the sigmoid function derivative
quickly approaches zero on both right and left sides. This behav-
ior translates to smaller gradients, which in turn leads to protracted
training periods. Furthermore, this rapid decline in the derivative
magnitude opens to the vanishing gradient problem during backpropa-
gation, which poses a significant challenge in achieving swift and stable
convergence in the neural network.

In contrast, the tanh function mitigates some of these difficulties.
Its derivative is characteristically sharper and maintains non-zero val-
ues over a more extended range on both ends. This design helps in
alleviating the vanishing gradient problem to some extent. However,
tanh is not without its limitations. Its adaptability is limited by its
rigidity in defining the non-linear transformation shape. As a result, the
tanh function sometimes struggles to model more intricate and nuanced
patterns present in complex datasets.

The challenges associated with previously discussed activation func-
tions prompted a rigorous exploration of alternative units. This led to
the adoption of the Growing Cosine Unit (GCU) (Noel et al., 2023). Ini-
tially conceptualized to mitigate the ‘‘dying ReLU’’ problem in convolu-
tional neural networks, GCUs have emerged as a promising contender
among oscillatory activation functions. Defined as

𝜙
(

𝑎(𝑙−1)𝑘

)

=
(

𝛽(𝑙)𝑘 𝑎
(𝑙−1)
𝑘 + 𝛽(𝑙)0𝑘

)

cos
(

𝛽(𝑙)𝑘 𝑎
(𝑙−1)
𝑘 + 𝛽(𝑙)0𝑘

)

, (A.1)

where 𝑎(𝑙−1)𝑘 represents the output from the previous layer, GCUs ex-
hibit a unique property. Unlike ReLU units, which typically yield a
singular decision boundary, GCU neurons decision boundary comprises
infinitely many parallel hyperplanes. This is attributable to the GCU ac-
tivation function infinite zeros. Additionally, GCUs offer consistent and
favorable derivatives, acting as a countermeasure against the vanishing
gradient issue. Furthermore, this trait produces a more efficient training
process, marked by reduced duration and improved convergence rates.

Appendix B. ADAM

Consider ∇𝐿𝑃 (𝛽)𝑏 as the gradient of the partial likelihood for batch
𝑏. In the ADAM optimization process, the first and second moment
estimations are updated as follows:

𝑚𝑏 ← 𝜉1𝑚𝑏−1 + (1 − 𝜉1)∇𝐿𝑃 (𝜃)𝑏,

𝑣𝑏 ← 𝜉2𝑣𝑏−1 + (1 − 𝜉2)∇𝐿𝑃 (𝜃)2𝑏 ,

where 𝑚 and 𝑣 represent the first and second moment gradients,
respectively. The hyperparameters 𝜉1 and 𝜉2 are instrumental in deter-
mining the extent to which past gradients influence the current moment
updates.

ADAM incorporates bias correction to adjust for the initial bias in
the first and second moments of the gradients. This correction is crucial
because the moving averages of these gradients start from zero, leading
to an initial bias toward zero, particularly noticeable at the early stages
of training. To counteract this, ADAM modifies the moving averages
32 
with a correction factor that is directly related to the learning rate and
inversely related to the iteration count. Denoting the current training
step as 𝑠, the first and second moments undergo bias correction as
follows:

̂ 𝑏,𝑠 =
𝑚𝑏

1 − 𝜉𝑠1
,

𝑣̂𝑏,𝑠 =
𝑣𝑏

1 − 𝜉𝑠2
,

with 𝜉𝑠1 and 𝜉𝑠2 approaching zero as 𝑠 increases. Consequently, the model
parameters are updated by:

𝛽𝑏 ← 𝛽𝑏−1 − 𝜓
𝑚̂𝑏,𝑠

√

𝑣̂𝑏,𝑠 + 𝜖
,

where 𝜓 denotes the learning rate, determining the step size of each
parameter update, and 𝜖 is a small constant (typically 1𝑒 − 8) to avoid
ny division by zero. It is important to note that adjusting the learning
ate during training can further refine the estimation of the weights.
owever, due to the complexity involved in determining an optimal

earning rate decay, we chose to maintain a constant learning rate,
enoted as 𝜓 , throughout the training process in our simulation studies
nd application.

ppendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.socnet.2024.05.004.
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